Algebra

1 a Express $\left(\frac{2}{3}\right)^{-2}$ as an exact fraction in its simplest form.
b Solve the equation

$$
\begin{equation*}
x^{\frac{3}{2}}-27=0 \tag{3}
\end{equation*}
$$

2 Solve the simultaneous equations

$$
\begin{align*}
& x+3 y=16 \\
& x^{2}-x y+2 y^{2}=46 \tag{7}
\end{align*}
$$

3 Simplify
a $\sqrt{192}-2 \sqrt{12}+\sqrt{75}$
b $(2+\sqrt{3})(5-2 \sqrt{3})$

4

$$
\mathrm{f}(x) \equiv x^{2}-4 \sqrt{2} x+11
$$

a Express $\mathrm{f}(x)$ in the form $a(x+b)^{2}+c$ stating the exact values of the constants a, b and c.
b Sketch the curve $y=\mathrm{f}(x)$, showing the coordinates of the turning point of the curve and of any points of intersection of the curve with the coordinate axes.

5

A sealed metal container for food is a cylinder of height 12 cm and base radius $r \mathrm{~cm}$.
Given that the surface area of the container must be at most $128 \pi \mathrm{~cm}^{2}$,
a show that $r^{2}+12 r-64 \leq 0$.
b Hence find the maximum value of r.

6 Find the non-zero value of x for which

$$
\begin{equation*}
(2 \sqrt{x})^{3}=4 x \tag{4}
\end{equation*}
$$

$7 \quad$ a Write down the value of x such that $2^{x}=32$.
b Solve the equation

$$
\begin{equation*}
32^{y+1}=4^{y} \tag{3}
\end{equation*}
$$

$8 \quad$ a Given that $t=\sqrt{x}$, express $x-5 \sqrt{x}$ in terms of t.
b Hence, or otherwise, solve the equation

$$
\begin{equation*}
x-5 \sqrt{x}+6=0 \tag{4}
\end{equation*}
$$

9 Prove, by completing the square, that there is no real value of the constant k for which the equation $x^{2}+k x+3+k^{2}=0$ has real roots.

10 a Find the value of x such that

$$
\begin{equation*}
8^{2 x-1}=32 \tag{3}
\end{equation*}
$$

b Find the value of y such that

$$
\begin{equation*}
\left(\frac{1}{3}\right)^{y-2}=81 \tag{3}
\end{equation*}
$$

11 Solve the inequality

$$
\begin{equation*}
x(2 x-7)<(x-2)^{2} . \tag{5}
\end{equation*}
$$

12 Express

$$
\begin{equation*}
\frac{2}{3 \sqrt{2}-4}-\frac{3-\sqrt{2}}{\sqrt{2}+1} \tag{6}
\end{equation*}
$$

in the form $a+b \sqrt{2}$, where a and b are integers.
13 a Solve the equation

$$
\begin{equation*}
6 y^{2}+25 y-9=0 \tag{3}
\end{equation*}
$$

b Find the values of the constant k such that the equation

$$
\begin{equation*}
x^{2}+k x+16=0 \tag{3}
\end{equation*}
$$

has equal roots.
14 a Given that $y=2^{x}$,
i show that $4^{x}=y^{2}$,
ii express 2^{x-1} in terms of y.
b By using your answers to part a, or otherwise, find the values of x for which

$$
\begin{equation*}
4^{x}-9\left(2^{x-1}\right)+2=0 . \tag{4}
\end{equation*}
$$

15 Find the pairs of values (x, y) which satisfy the simultaneous equations

$$
\begin{align*}
& x^{2}+2 x y+y^{2}=9 \\
& x-3 y=1 \tag{7}
\end{align*}
$$

16 a Prove, by completing the square, that the roots of the equation $x^{2}+a x+b=0$ are given by

$$
\begin{equation*}
x=\frac{-a \pm \sqrt{a^{2}-4 b}}{2} . \tag{6}
\end{equation*}
$$

b Hence, find an expression for b in terms of a such that the equation $x^{2}+a x+b=0$ has a repeated root.

17

$$
\begin{equation*}
\mathrm{f}(x) \equiv 2 x^{2}-12 x+19 \tag{2}
\end{equation*}
$$

a Prove that $\mathrm{f}(x) \geq 1$ for all real values of x.
b Find the set of values of x for which $\mathrm{f}(x)<9$.
18 a Express $(1-\sqrt{5})^{2}$ in the form $a+b \sqrt{5}$.
b Hence, or otherwise, solve the equation

$$
y^{2}=3-\sqrt{5},
$$

giving your answers in the form $c \sqrt{2}+d \sqrt{10}$, where c and d are exact fractions.

